Further New Secoatisane Diterpenoids from the Chinese Mangrove Excoecaria agallocha L.

by Ji-Dong Wang^a)^b), Zhen-Yu Li^a), Wen-Sheng Xiang^b) and Yue-Wei Guo*^a)

^a) State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China (phone: +86-21-50805813; e-mail: ywguo@mail.shcnc.ac.cn)
^b) Zhejiang Hisun Pharmaceutical Co., Ltd., Taizhou, Zhejiang 318000, P. R. China

Four new 3,4-seco-*ent*-atisane diterpenoids, agallochaols G-J (1-4), were isolated from the stems and leaves of the Chinese mangrove *Excoecaria agallocha* L. Their structures were established on the basis of detailed spectroscopic analysis, chemical evidence, and by comparison with the literature data of related compounds.

Introduction. The mangrove *Excoecaria agallocha* L.(Euphorbiaceae) is a rich source of diterpenoids with different skeletons [1-5]. We previously reported the isolation and structure elucidation of the new compounds agallochaols A–F from the title plant [6][7]. During our continuing search for medicinal agents from mangroves, we now report the isolation and structure elucidation of four additional new minor diterpenoids, agallochaols G–J (1–4).

© 2006 Verlag Helvetica Chimica Acta AG, Zürich

Results and Discussion. – The usual workup [6] of the AcOEt-soluble fraction of the MeOH extract of the stems and leaves of *E. agallocha* yielded the new compounds 1-4. All of them demonstrated considerable spectroscopic analogy with the previously reported agallochaol C (5) [7] and excoacarin V3 (6) [7][8], which possess a common seco-*ent*-atisane skeleton, and differing from each other only by either the oxidation or reduction at C(16). The NMR spectra of 1-4 displayed each a set of typical signals due to COOH and isopropenyl groups, characteristic for secoatisane diterpenoids. The *ent* configuration of compounds 1-4 was tentatively assumed to be the same as in 5 [7] and 6 [8] from the co-occurrence and close similarity of their structures and based on their negative sign of optical rotation.

Agallochaol G (1) was isolated as a colorless oil, and its molecular formula was deduced to be $C_{20}H_{32}O_3$ from the ESI-MS quasi-molecular ion peak at m/z 343 $([M+Na]^+)$, and based on the ¹H- and ¹³C-NMR spectra (*Tables 1* and 2, resp.). The IR spectrum showed absorption bands assignable to an OH (3427) and a C=O group (1708 cm⁻¹), as well as a 1,1-disubstituted alkene (1640, 806 cm⁻¹). The presence of a COOH and an isopropenyl group was also evident from the ¹H- and ¹³C-NMR data. The COOH group was further confirmed by treatment of **1** with diazomethane affording the corresponding methyl ester. Furthermore, the 3- and 5-positions of the COOH and the isopropenyl group, respectively, were secured by the HMBC correlations (*Figure*) between the C=O resonance at $\delta(C)$ 179.6 and CH₂(2) at $\delta(H)$ 2.16/2.37; between C(4) at $\delta(C)$ 147.3 and Me(18) at $\delta(H)$ 1.74, H–C(5) at 1.90, and CH₂(19) at 4.67/4.86, respectively; and between C(5) at $\delta(C)$ 51.2 and H–C(9) at $\delta(H)$ 1.10, Me(20) at 0.97, and Me(18) at 1.74, respectively. In addition, other long-range correlations for the quaternary C-atoms C(8), C(10), and C(16), and for the tertiary ones (C(9) and C(12)), were observed in the HMBC spectrum.

Figure. Key HMBC correlations for 1 and 4

The above-mentioned evidence clearly suggested that **1** is a secoatisane-type diterpene. Comparison of the ¹H- and ¹³C-NMR data revealed strong similarities between **1** and the co-occurring excoacarin V3 (**6**) [7][8]. In fact, **1** was found to differ from **6** only by the configuration at C(16) (epimers). The ¹³C-NMR resonances for C(11) and C(13) of **1** were shifted upfield (from δ (C) 23.3 to 21.8) and downfield (from 23.8 to 25.3), respectively, relative to those of the corresponding C-atoms of **6**. These differences could be rationalized by the γ -gauche effect due to the Me group at C(16) [9]. The epimeric relationship between **1** and **6** was further confirmed by comparison of their ¹³C-NMR data with those of the model epimers **7** and **8** [9].

Position	1 ^a)	2 ^b)	3 ^a)	4 ^a) 1.54–1.57 (<i>m</i>)	
$H_a - C(1)$	1.53–1.55 (m)	1.44–1.46 (<i>m</i>)	1.55 - 1.57 (m)		
$H_{b}-C(1)$	1.53 - 1.55 (m)	1.44 - 1.46 (m)	1.55 - 1.57 (m)	1.54 - 1.57 (m)	
$H_a - C(2)$	2.15 - 2.18 (m)	2.07 - 2.09(m)	2.21 - 2.24 (m)	2.14-2.17(m)	
$H_{b}-C(2)$	2.36 - 2.39(m)	2.26 - 2.29(m)	2.39 - 2.41 (m)	2.38 - 2.41 (m)	
H-C(5)	1.89 - 1.92 (m)	1.88 - 1.90 (m)	1.92 - 1.94(m)	2.02 - 2.04 (m)	
$H_a - C(6)$	1.32 - 1.35(m)	1.28 - 1.30 (m)	1.32 - 1.34(m)	1.33-1.35 (m)	
$H_{\beta}-C(6)$	1.77 - 1.80 (m)	1.88 - 1.90 (m)	1.73 - 1.75(m)	1.54 - 1.56 (m)	
$H_{a}-C(7)$	1.34 - 1.38 (m)	1.34 - 1.36(m)	1.30 - 1.32 (m)	1.77 - 1.80 (m)	
$H_{\beta}-C(7)$	1.06 - 1.10 (m)	1.05 - 1.08(m)	1.10 - 1.12 (m)	1.59-1.61 (m)	
H–C(9)	1.08 - 1.10 (m)	1.00 - 1.03 (m)	1.30 - 1.32 (m)	1.15 - 1.17 (m)	
$H_{a} - C(11)$	1.33 - 1.35(m)	1.28 - 1.30 (m)	1.32 - 1.34(m)	1.34-1.36 (m)	
$H_{\beta}-C(11)$	2.02 - 2.05(m)	1.95 - 1.97(m)	1.66 - 1.68 (m)	1.80 - 1.83 (m)	
H - C(12)	1.53 - 1.55(m)	1.74 - 1.76(m)	1.70 - 1.72(m)	2.49-2.51 (m)	
$H_{a}-C(13)$	1.53 - 1.55 (m)	1.46 - 1.47 (m)	1.46 - 1.48 (m)	1.48 - 1.51 (m)	
$H_{\beta}-C(13)$	1.68 - 1.38 (m)	1.28 - 1.30 (m)	1.26 - 1.28(m)	1.33-1.35 (m)	
$H_{a} - C(14)$	1.83 - 1.85(m)	1.85 - 1.87 (m)	1.86 - 1.88(m)	2.00-2.02(m)	
$H_{\beta}-C(14)$	1.06 - 1.08 (m)	1.06 - 1.08(m)	0.87 - 0.86(m)	0.82 - 0.85 (m)	
$H_a - C(15)$	1.20 - 1.23 (m)	0.96 - 0.98 (m)	0.77 - 0.79 (m)	_	
$H_{\beta}-C(15)$	1.37 - 1.40 (m)	1.18 - 1.20 (m)	1.30 - 1.32(m)	-	
H–C(15)	-	-	-	5.85 (br. s)	
H–C(16)	-	-	1.86 - 1.88 (m)	_	
Me(17)	1.29 (s)	-	-	-	
$H_{a}-C(17)$	-	3.47 (d, J = 11.4)	3.52 (d, J = 7.1)	4.15 (br. s)	
$H_{b}-C(17)$	-	3.32(d, J=11.4)	3.53 (d, J = 7.1)	4.15 (br. s)	
Me (18)	1.74(s)	1.70 (s)	1.74(s)	1.75 (s)	
$H_{a}-C(19)$	4.67 (br. s)	4.64 (br. s)	4.67 (br. s)	4.69 (br. s)	
$H_{b}-C(19)$	4.86 (br. s)	4.78 (br. s)	4.85 (br. s)	4.86 (br. s)	
Me(20)	0.97(s)	0.94(s)	0.97(s)	1.00(s)	

Table 1. ¹*H-NMR Data of Compounds* 1-4. At 400 MHz; δ in ppm. Assignments based on ¹*H*,¹*H*-COSY, HMQC, HMBC, and NOESY experiments (see text).

From the above data, the structure of agallochaol G (1) was determined as 16-*epi*-excoacarin V3, which corresponds to 16α -hydroxy-3,4-seco-*ent*-atis-4(19)-en-3-oic acid.

Agallochaol H (2) was assigned the molecular formula $C_{20}H_{32}O_4$ by HR-ESI-MS (m/z 359.2204 ([M+Na]⁺)), the same as for compound **5**. In the ¹H-NMR spectrum of **2**, signals were present for two Me groups (δ (H) 1.70, 0.94 (2s)), an OCH₂ function (δ (H) 3.32, 3.47 (2d, J=11.4 Hz each)), and two olefinic H-atoms (δ (H) 4.64, 4.78 (2 br. s)). The ¹³C-NMR (DEPT) spectra showed the presence of two Me, ten CH₂, and three CH groups, as well as five quaternary C-atoms (*Table 2*). By comparison of the ¹³C-NMR data of **2** with those of **5**, only C(11) was found to differ in chemical shift (δ (C) 21.3 for **2** vs. 24.5 for **5**). Again, this difference was attributed to the γ -gauche effect, in this case exerted by the β -oriented CH₂OH group at C(16) on C(11). Therefore, these two compounds only differed in the configuration at C(16), the other parts being identical.

From the above data, the structure of agallochaol H (2) was derived as 16-epi-agallochaol C, which corresponds to 16α , 17-dihydroxy-3, 4-seco-ent-atis-4(19)-en-3-oic acid.

Table 2. ¹³C-NMR Data of Compounds 1–6, 9, and 11. At 100 MHz; δ in ppm. Assignments based on ¹H,¹H-COSY, HMQC, and HMBC experiments.

33.4 (<i>t</i>)							
	33.4(t)	33.3 (t)	34.4 (<i>t</i>)	35.5 (<i>t</i>)	33.0 (<i>t</i>)	39.8 (<i>t</i>)	40.7 (<i>t</i>)
28.6(t)	28.5(t)	28.6(t)	28.0(t)	30.1(t)	27.6(t)	18.5(t)	19.1(t)
179.6 (s)	177.0 (s)	179.6 (s)	178.8 (s)	179.0 (s)	177.7 (s)	34.4(t)	37.8 (t)
147.3 (s)	147.2 (s)	147.5 (s)	147.3 (s)	149.5 (s)	147.5 (s)	48.5 (s)	43.7 (s)
51.2 (d)	50.7 (d)	51.1 (d)	51.0 (d)	52.6 (d)	50.4(d)	56.7 (d)	57.0 (d)
24.5(t)	24.3(t)	24.6(t)	26.8(t)	26.4(t)	24.6(t)	18.4(t)	22.4(t)
38.3(t)	38.0(t)	38.9(t)	36.3 (t)	40.0(t)	38.1(t)	42.0(t)	41.6 (<i>t</i>)
33.6 (s)	32.4(s)	31.0(s)	37.2 (s)	34.5 (s)	33.5(s)	44.6 (s)	44.8 (s)
42.7 (d)	42.5 (d)	43.3 (d)	44.7 (d)	44.7 (d)	41.9 (d)	55.4 (d)	55.3 (d)
39.6 (s)	39.4 (s)	39.7 (s)	39.3 (s)	41.2 (s)	39.3 (s)	40.7 (s)	39.6 (s)
21.8(t)	21.3(t)	21.3(t)	24.8(t)	24.5(t)	23.3(t)	20.2(t)	18.9(t)
37.7 (d)	31.5(d)	25.9(d)	31.9 (d)	33.7(d)	37.5 (d)	45.5(d)	38.2 (d)
25.3(t)	24.2(t)	28.9(t)	28.4(t)	24.7(t)	23.8(t)	37.5(t)	37.2 (t)
26.9(t)	27.3(t)	28.4(t)	27.7(t)	28.7(t)	26.8(t)	26.1(t)	31.4(t)
57.3 (t)	51.7(t)	43.5 (t)	136.3 (d)	53.9 (t)	56.1(t)	53.2(t)	45.0(t)
72.3 (s)	74.0(s)	38.9 (d)	143.8 (s)	75.5(s)	73.3(s)	81.8 (s)	43.3 (d)
30.7(q)	68.4(t)	66.6(t)	64.1(t)	70.1(t)	30.1(q)	66.4(t)	67.5 (<i>t</i>)
23.4(q)	23.5(q)	23.5(q)	23.4(q)	24.6(q)	23.7(q)	24.3(q)	29.0(q)
113.5(t)	113.1(t)	113.4(t)	113.5(t)	114.4(t)	113.2(t)	205.7(s)	183.7 (s)
17.6 (q)	17.4 (q)	17.7 (q)	17.8 (q)	18.9 (q)	17.9 (q)	n.r. ^d)	15.6 (q)
	$\begin{array}{c} 19.6 (8) \\ 47.3 (s) \\ 51.2 (d) \\ 24.5 (t) \\ 38.3 (t) \\ 33.6 (s) \\ 42.7 (d) \\ 39.6 (s) \\ 21.8 (t) \\ 37.7 (d) \\ 25.3 (t) \\ 37.7 (d) \\ 25.3 (t) \\ 57.3 (t) \\ 72.3 (s) \\ 30.7 (q) \\ 23.4 (q) \\ 13.5 (t) \\ 17.6 (q) \end{array}$	$\begin{array}{ccccc} 17.0 & (s) & 177.0 & (s) \\ 177.0 & (s) & 147.2 & (s) \\ 147.3 & (s) & 147.2 & (s) \\ 51.2 & (d) & 50.7 & (d) \\ 24.5 & (t) & 24.3 & (t) \\ 38.3 & (t) & 38.0 & (t) \\ 33.6 & (s) & 32.4 & (s) \\ 42.7 & (d) & 42.5 & (d) \\ 39.6 & (s) & 39.4 & (s) \\ 21.8 & (t) & 21.3 & (t) \\ 37.7 & (d) & 31.5 & (d) \\ 25.3 & (t) & 24.2 & (t) \\ 37.7 & (d) & 31.5 & (d) \\ 25.3 & (t) & 24.2 & (t) \\ 57.3 & (t) & 51.7 & (t) \\ 30.7 & (q) & 68.4 & (t) \\ 23.4 & (q) & 23.5 & (q) \\ 13.5 & (t) & 113.1 & (t) \\ 17.6 & (q) & 17.4 & (q) \\ \end{array}$	$\begin{array}{c} 1.79.6 \text{ (s)} & 177.6 \text{ (s)} & 179.6 \text{ (s)} \\ 47.3 \text{ (s)} & 147.2 \text{ (s)} & 147.5 \text{ (s)} \\ 51.2 \text{ (d)} & 50.7 \text{ (d)} & 51.1 \text{ (d)} \\ 24.5 \text{ (t)} & 24.3 \text{ (t)} & 24.6 \text{ (t)} \\ 38.3 \text{ (t)} & 38.0 \text{ (t)} & 38.9 \text{ (t)} \\ 33.6 \text{ (s)} & 32.4 \text{ (s)} & 31.0 \text{ (s)} \\ 42.7 \text{ (d)} & 42.5 \text{ (d)} & 43.3 \text{ (d)} \\ 39.6 \text{ (s)} & 39.4 \text{ (s)} & 39.7 \text{ (s)} \\ 21.8 \text{ (t)} & 21.3 \text{ (t)} & 21.3 \text{ (t)} \\ 37.7 \text{ (d)} & 31.5 \text{ (d)} & 25.9 \text{ (d)} \\ 25.3 \text{ (t)} & 24.2 \text{ (t)} & 28.9 \text{ (t)} \\ 26.9 \text{ (t)} & 27.3 \text{ (t)} & 28.4 \text{ (t)} \\ 57.3 \text{ (t)} & 51.7 \text{ (t)} & 43.5 \text{ (t)} \\ 72.3 \text{ (s)} & 74.0 \text{ (s)} & 38.9 \text{ (d)} \\ 30.7 \text{ (q)} & 68.4 \text{ (t)} & 66.6 \text{ (t)} \\ 23.4 \text{ (q)} & 23.5 \text{ (q)} & 23.5 \text{ (q)} \\ 13.5 \text{ (t)} & 113.1 \text{ (t)} & 113.4 \text{ (t)} \\ 17.6 \text{ (q)} & 17.4 \text{ (q)} & 17.7 \text{ (q)} \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

A literature search revealed that, formally, the rings A-C of **2** correspond to those of the known compound **9**, a metabolite previously isolated from *Trewia nudiflora* [10]. However, careful comparison of their NMR data revealed apparent differences. In fact, the ¹³C-NMR resonances for C(8), C(9), C(12), C(13), and C(16) of **2** and those of **9** are quite different (*Table 2*). This finding raises the question as whether the proposed structure of **9** is correct. It was reported that the ¹³C-NMR resonance of C(16) is characteristic for distinguishing *ent*-kaurane and *ent*-atisane diterpenes [9]. Generally, C(16) resonates at δ (C) 78–82 for the former, and at 72–75 ppm for the latter. In the light of this empirical data, it seems that **9** should be revised as **10**, with an *ent*-kaurane skeleton instead of an atisane framework.

Agallochaol I (3) had the molecular formula $C_{20}H_{32}O_3$, as established by ESI-MS and ¹³C-NMR experiments; this is 16 mass units less than in the case of 2. Careful comparison of the ¹³C-NMR data of 3 with those of 2 indicated that an oxygenated quaternary C-atom, assignable to C(16) in 2, was replaced by a methine group at δ (C) 38.9 in 3. Further, two signals resonating at δ (C) 25.9 and 43.5, assignable to C(12) and C(15), were consequently shifted upfield. From these data, the structure of compound 3 was determined as 17-hydroxy-3,4-seco-*ent*-atis-4(19)-en-3-oic acid.

Interestingly, like for compound **2**, the ¹³C-NMR signals for C(8), C(9), C(12), C(13) and C(16) of **3** were obviously different from those of 17-hydroxy-*ent*-atisan-19-oic acid (**11**) (*Table 2*) although formally sharing the same partial structure (rings A-C) [10].

This clearly suggests that, as in the case of 2 vs. 9, the structure of 11 should be depicted as 12 (*i.e.*, 17-hydroxy-*ent*-kaurane-19-oic acid).

Agallochaol J (4) displayed a HR-ESI-MS peak at m/z 341.2088 ($[M+Na]^+$), two mass units lower than in the case of **3**. The ¹H- and ¹³C-NMR spectra of **4** (*Tables 1* and 2, resp.) revealed a close relationship with **3**. An overall comparison of the pertinent NMR data revealed that the main difference between these two compounds was at ring C. The ¹³C-NMR (DEPT) experiment implied an unsaturation at C(15) (trisubstituted C=C bond), as deduced by the HMBC correlations between H–C(15) at δ (H) 5.85 (br. s) and C(8), C(12), and C(17) (δ (C) 37.2, 31.9, and 64.1, resp.); and between CH₂(17) at δ (H) 4.15 (br. s) and both C(15) and C(16) (δ (C) 136.3 and 143.8, resp.) (see *Figure*). The presence of the Δ ¹⁵⁽¹⁶⁾ unsaturation was inferred from the downfield shifts of C(8) (from δ (C) 31.0 to 37.2) and C(12) (from 25.9 to 31.9). From these data, agallochaol J (**4**) was identified as 17-hydroxy-3,4-seco-*ent*-atis-15en-3-oic acid.

The cytotoxic activities of agallochaol H-J (1-4) against the growth of tumor cell lines HL-60 (human acute myeloid leukemia) and A549 (human lung adenocarcinoma) were evaluated. Unfortunately, all tested compounds were inactive at a concentration of 20 µg/ml. Other tests such as antifungal and antibiotic assays of these new compounds are currently ongoing.

This research work was financially supported by the *National Marine 863 Project* (No. 2005AA624040), the *Natural Science Foundation of China* (No. 20572116), the *STCSM Project* (No. 04ZR14156 and 054307062), and, partly, by the *State Key Program of Basic Research of China* (No. 2004CB518905).

Experimental Part

General. Column chromatography (CC): silica gel (100–200 and 200–300 mesh; Qing Dao Hai Yang Chemical Group Co.). TLC: precoated silica-gel plates (G60 F_{254} ; Yan Tai Zi Fu Chemical Group Co.). Optical rotation: Perkin-Elmer-341 Polarimeter. IR spectra: Nicolet Magna FT-IR 750 spectrometer; KBr pellets; in cm⁻¹. ¹H- and ¹³C-NMR Spectra: Bruker DRX-400 spectrometer; at 400 or 100 MHz for ¹H and ¹³C resp.; chemical shifts δ in ppm rel. to residual CHCl₃ (δ (H) 7.26, δ (C) 77.0) or CD₃OD (δ (H) 3.30, δ (C) 49.0), coupling constants J in Hz; all assignments were supported by ¹H,¹H-COSY, HMQC, and HMBC experiments. ESI- and HR-ESI-MS: Q-TOF Micro LC-MS-MS spectrometer; in m/z.

Plant Material. Excoecaria agallocha was collected in Guangxi Province, P. R. China, in 1999, and identified by Associate Prof. *Jin-Gui Shen*, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (SIMM-CAS). A voucher specimen (No. 99PL-05) was deposited at SIMM-CAS.

Extraction and Isolation. The dried ground stems and leaves (4.0 kg) of *E. agallocha* were extracted with MeOH (3×51), and the MeOH extract was concentrated *in vacuo*. The resulting residue (410 g) was dissolved in H₂O (1 l) and extracted, in this order, with petroleum ether (PE), AcOEt, and BuOH. The AcOEt extract was evaporated *in vacuo* to give a residue (100 g), which was separated by CC (SiO₂, 100–200 mesh, 1.5 kg; PE/AcOEt 90:10, 80:20, 70:30, 60:40, 50:50, then Me₂CO). The eluted material was combined to yield 16 fractions (*Fr.*) on the basis of TLC evidence. *Fr.* 9 and *10* were further purified by CC (1. SiO₂, CHCl₃/MeOH; 2. *Sephadex LH-20*, MeOH) to yield pure **1** (11 mg), **2** (10 mg), **3** (7 mg), **4** (3 mg).

Agallochaol G (=16 α -Hydroxy-3,4-seco-ent-atis-4(19)-en-3-oic Acid; **1**). Colorless oil. [α]²⁰_D = -17 (c =0.7, CHCl₃). IR: 3427, 2929, 1708, 1640, 806. ¹H- and ¹³C-NMR: see *Tables 1* and 2, resp. ESI-MS: 343 ([M+Na]⁺).

Methyl 16a-Hydroxy-3,4-seco-ent-*atis-4(19)-en-3-oate.* Compound **1** (2.0 mg) was treated under standard conditions with CH_2N_2 at r.t. to afford the corresponding Me ester (1.8 mg) as a colorless oil. ¹H-NMR (400 MHz, CDCl₃): 0.96 (*s*, Me(20)); 1.29 (*s*, Me(17)); 1.58 (br. *s*, Me(18)); 2.12–2.16 (*m*, H_a-C(2)); 2.35–2.38 (*m*, H_b-C(2)); 3.65 (br. *s*, MeO); 4.67 (br. *s*, H_a-C(19)); 4.86 (br. *s*, H_b-C(19)). ESI-MS: 357 ([M + Na]⁺).

Agallochaol H (=16 α ,17-Dihydroxy-3,4-seco-ent-atis-4(19)-en-3-oic Acid; **2**). Colorless oil. [α]_D²⁰ = -7 (c=0.38, MeOH/CHCl₃ 4:1). IR: 3409, 2954, 1708, 1637, 891. ¹H- and ¹³C-NMR: see *Tables* 1 and 2, resp. ESI-MS: 359 ([M+Na]⁺), 695 ([2M+Na]⁺). HR-ESI-MS: 359.2204 ([M+Na]⁺; C₂₀H₃₂-NaO₄⁺; calc. 359.2207).

Agallochaol I (=17-Hydroxy-3,4-seco-ent-atis-4(19)-en-3-oic Acid; **3**). Colorless oil. $[a]_D^{20} = -7.1$ (c = 0.33, CHCl₃). IR: 3410, 2952, 1708, 1456, 892, 757. ¹H- and ¹³C-NMR: see *Tables 1* and 2, resp. ESI-MS: 319 ($[M - H]^-$), 639 ($[2M - H]^-$).

Agallochaol J (=17-Hydroxy-3,4-seco-ent-atis-15-en-3-oic Acid; 4). Colorless oil. $[\alpha]_D^{20} = -14$ (c = 0.23, CHCl₃). IR: 3423, 2924, 1705, 1637, 893. ¹H- and ¹³C-NMR: see *Tables 1* and 2, resp. ESI-MS: 341 ([M + Na]⁺). HR-ESI-MS: 341.2088 ([M + Na]⁺, C₂₀H₃₂NaO⁺₃; calc. 341.2093).

REFERENCES

- T. Konishi, K. Yamazoe, T. Konoshima, T. Maoka, Y. Fujiwara, K. Miyahara, J. Nat. Prod. 2003, 66, 108.
- [2] T. Konishi, M. Takasaki, H. Tokuda, S. Kiyosawa, T. Konoshima, Biol. Pharm. Bull. 1998, 21, 993.
- [3] T. Konoshima, T. Konishi, M. Takasaki, K. Yamazoe, H. Tokuda, Biol. Pharm. Bull. 2001, 24, 1440.
- [4] A. S. R. Anjaneyulu, V. L. Rao, Phytochemistry 2003, 62, 585.
- [5] A. S. R. Anjaneyulu, V. L. Rao, *Phytochemistry* **2000**, *55*, 891.
- [6] J.-D. Wang, Y.-W. Guo, Helv. Chim. Acta 2004, 87, 2829.
- [7] J.-D. Wang, Z.-Y. Li, Y.-W. Guo, Helv. Chim. Acta 2005, 88, 979.
- [8] T. Konishi, K. Yamazoe, M. Kanzato, T. Konoshima, Y. Fujiwara, Chem. Pharm. Bull. 2003, 51, 1142.
- [9] Y.-L. Ding, Z.-J. Jia, *Phytochemistry* **1991**, *30*, 2412.
- [10] Z.-Z. Du, H.-P. He, Y.-M. Shen, X.-J. Hao, Helv. Chim. Acta 2004, 87, 758.

Received April 19, 2006